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N
anoscale magnetic ferrite materials
have attracted much attention in
recent years due to their unique

magnetic and electrical properties and che-
mical stabilities.1,2 These properties are sig-
nificant not only from a fundamental point
of view, for example, blockingbehavior, nano-
scale confinement, and nanomagnetism,3�5

but also for their potential applications, such
as high-density data storage, spin-electronics,
bioseparation, magnetic resonance imag-
ing, and magnetically guided drug deliv-
ery systems.6�10 Barium ferrite (BaFe12O19)
is one member of the ferrite family with
significant material qualities such as high
Curie temperature, large magnetization,
large magnetocrystalline anisotropy, high
coercivity, and excellent chemical stability.11

It has been widely adopted as a traditional
permanent magnet and also recently used
as high-density magnetic and magneto-
optical recording media and microwave
filters.12�15 Since the magnetic properties
of BaFe12O19 strongly depend on their par-
ticle size, shape, and homogeneity, various
methods, including microwave-induced,
laser deposition, microemulsion, and nano-
patterning technique,16�19 have been used
to prepare nanoscale BaFe12O19 to improve
their magnetic properties. These manufac-
turing techniques have tended to focus on
nanoscale particles. There are few reports
on one-dimensional (1D) BaFe12O19 nano-
wires which were mainly fabricated by a
template method using nanoporous anodic
aluminumoxide films as the template. How-
ever, the diffusion of aluminum ions in
BaFe12O19 nanowires often causes hetero-
geneous impurities, and nanowires often

display a low aspect ratio. It is also difficult
to realize a practical industrial production
and currently lack sophisticatednanotechnol-
ogies to develop these free-standing nano-
wire building blocks into functional nano-
devices. The ever-increasing applications
of magnetic nanowires in the new field of
biomagnetics and high-density data storage
media demand novel fabrication methods
which have a promising potential to realize
large-scale production of high-quality free-
standing1Dmagnetic nanowires. Electrospin-
ning is believed to provide this possibility.
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ABSTRACT BaFe12O19 single-particle-chain

nanofibers have been successfully prepared by

an electrospinning method and calcination

process, and their morphology, chemistry,

and crystal structure have been characterized

at the nanoscale. It is found that individual

BaFe12O19 nanofibers consist of single nanoparticles which are found to stack along the

nanofiber axis. The chemical analysis shows that the atomic ratio of Ba/Fe is 1:12, suggesting a

BaFe12O19 composition. The crystal structure of the BaFe12O19 single-particle-chain nanofibers

is proved to be M-type hexagonal. The single crystallites on each BaFe12O19 single-particle-

chain nanofibers have random orientations. A formation mechanism is proposed based on

thermogravimetry/differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and trans-

mission electron microscopy (TEM) at six temperatures, 250, 400, 500, 600, 650, and 800 �C.
The magnetic measurement of the BaFe12O19 single-particle-chain nanofibers reveals that the

coercivity reaches a maximum of 5943 Oe and the saturated magnetization is 71.5 emu/g at

room temperature. Theoretical analysis at the micromagnetism level is adapted to describe the

magnetic behavior of the BaFe12O19 single-particle-chain nanofibers.
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Electrospinning is a process by which very fine fibers
(with diameter on the micro- or nanoscale and lengths
up to kilometers) are drawn from a liquid by an
electrical charge. The first significant report of electro-
spinning to produce fibers dates from 1934 when a
patent filed by A. Formhals was issuedwhich described
electrospinning as a process for forming fine textile
fibers.20 Electrospinning combined with heating treat-
ments has been widely adopted to prepare various 1D
nanomaterials because of the simple manufacturing
method, low cost, and relatively high production rate.
The applicability of many types of materials include
metals, metal oxides, and ferrite nanofibers.21�25 How-
ever, there are rarely reports on M-type BaFe12O19

nanofibers. It is believed to be because forming 1D
M-type BaFe12O19 nanofibers involves a very high
temperature heating treatment under zero local spatial
confinement, which is extremely not conducive to
forming a 1D structure whether at the microscale or
nanoscale.
In this work, we present a fabrication method of

BaFe12O19 single-particle-chain nanofibers prepared
using a combined technique of electrospinning and
high-temperature heating treatment for the first
time. The morphology, structure, chemical and mag-
netic characterization, and growth mechanism of the
BaFe12O19 single-particle-chain nanofibers have been
systemically investigated. It is believed that the new

structural form of the single-particle-chain nanofibers
is significant and will contribute to expanding the
applications of BaFe12O19 into the new field of bio-
magnetics and high-density data storage media.

RESULTS AND DISCUSSION

Morphological and Chemical Analysis of BaFe12O19 Single-
Particle-Chain Nanofibers. Themorphologies of BaFe12O19

nanofibers calcined at 800 �C for 2 h were observed by
SEM and TEM. Figure 1a shows a representative SEM
image of the calcined BaFe12O19 nanofibers. Contin-
uous structure and virtually uniform diameter can be
seen in each nanofiber after the PVP was removed by
the calcination process. The average length for the
majority of the nanofibers is approximately 150 μm,
while the average diameter is for 70 nm. The quanti-
tative analysis (inset of Figure 1a) shows that the
diameter of the BaFe12O19 nanofibers, measured on
average 70 nm, ranges from 50 to 100 nm.

Figure 1b displays a TEM image of several BaFe12O19

nanofibers, which provides a further insight into
their microstructure. It is clearly seen that indivi-
dual BaFe12O19 nanofibers consist of single nanoparti-
cles stacked along the nanofiber axis. Therefore, the
nanofibers are named BaFe12O19 single-particle-chain
nanofibers in this work. Individual BaFe12O19 single-
particle-chain nanofibers have a continuous structure
and uniform diameter, which is in good agreement

Figure 1. (a) Representative SEM image of BaFe12O19 nanofibers. Inset shows a quantitative analysis of their diameter
distribution. (b) Bright-field TEM image of individual BaFe12O19 single-particle-chain nanofibers calcined in air at 800 �C for 2 h.
(c) Lattice-resolutionHRTEM imageof the particlemarkedby a red square in (b). (d) XRDpatterndetected froma large amount
of the BaFe12O19 nanofibers calcined at 800 �C for 2 h.

A
RTIC

LE



ZHANG ET AL. VOL. 6 ’ NO. 3 ’ 2273–2280 ’ 2012

www.acsnano.org

2275

with the above SEM observation. It is known that the
critical single-domain radius of BaFe12O19 particles is
approximately 290 nm,26 which suggests that each
particle on the BaFe12O19 single-particle-chain nano-
fibers is a magnetically single domain.

Figure 1c shows a lattice-resolution HRTEM image
of the single nanoparticle marked by red square in
Figure 1b, revealing a single-crystalline structure. The
interplanar spacing is measured to be 0.263 nm, con-
sistent with the (114) crystallographic orientation of
M-type hexagonal BaFe12O19. The SAED experiments
which are presented later demonstrate that theM-type
hexagonal structure is preserved in the BaFe12O19

single-particle-chain nanofibers. The crystal structure
was further investigated by XRD technique. Figure 1d
shows a typical XRD spectrum of the BaFe12O19 single-
particle-chain nanofibers calcined at 800 �C for 2 h. The
corresponding XRDdiffraction peaks can be indexed to
(006), (110), (107), (114), (201), (203), (116), (205), (206),
(1011), (209), (300), (217), (304), (2012), (220), (2111),
(2014), and (317) planes. This suggests that the hex-
agonal structure of bulk BaFe12O19 is preserved in the
BaFe12O19 single-particle-chain nanofibers, which is
consistent with the crystal characterization using TEM.
There is no impurity phases presented in this spectrum,
indicating a pure chemical phase of BaFe12O19.

The chemistry of the BaFe12O19 single-particle-chain
nanofibers was characterized using EDX and STEM
mapping on a 300 kV HRTEM. The inset of Figure 2a
shows a representative EDX spectrum obtained from
the corresponding area in Figure 1b. The barium, iron,
and oxygen peaks come from the nanofiber specimen.
As the EDX technique is not accurate for analyzing the
low atomic number (low Z), only the atomic ratio of

barium and iron was simulated in this spectrum in
order to avoid an error. Quantitative analysis of this
spectra indicates a 1:12 atomic ratio of Ba/Fe, inferring
a BaFe12O19 composition for the nanofibers prepared
under our experimental conditions. The copper and
carbon come from the holey carbon coated copper
grids, which was confirmed by EDX of an empty holey
carbon coated copper grid.

The chemical element distributions of BaFe12O19

nanofibers were further studied by HAADF-STEM and
EDX elemental mapping analysis (Figure 2) techniques.
Figure 2a shows a representative HADDF-STEM image
of a single BaFe12O19 single-particle-chain nanofiber.
The contrast of incoherent high-resolution HADDF-
STEM images depends directly on the sample atomic
number Z and thickness for the materials; in the
nanofiber image, a pure chemical phase is revealed,
and the individual BaFe12O19 nanofiber is composed of
single crystals of various sizes stacking along the
nanofiber axis. Figure 2b�d displays the correspond-
ing EDXmappings of oxygen (KR, 0.52 keV), iron (KR, 6.4
keV), and barium (LR, 4.47 keV) elements, respectively.
It is seen that the elements O, Fe, and Ba are evenly
distributed throughout the whole nanofiber, revealing
a uniform chemical phase.

Figure 3 shows a detailed structural investigation of
the BaFe12O19 single-particle-chain nanofibers using
TEM and convergent beam electron diffraction (CBED)
techniques. The large-magnified TEM image (Figure 3a)
reveals that the individual BaFe12O19 nanofiber is com-
posed of single nanocrystallites stacking alternatively
along the nanofiber axis. The size of these nanocrystal-
lites ranges from 40 to 80 nm confirmed by the TEM
observations. CBED using a 0.5 nm spot size configura-
tion is believed to be used for the first time to analyze
the crystal structure of single BaFe12O19 crystallites on
a single nanofiber. The top-left inset shows the CBED
pattern of the particle marked by a red circle in
Figure 3a, revealing a hexagonal close packing (hcp)
structure with Æ110æ orientation. The bottom-right
inset shows the CBED pattern of a particle marked by
a green circle, revealing a Æ100æ orientation of the hcp
structure. The representative lattice-resolution HRTEM
image of the interface between the two neighbor
particles is shown in Figure 3b, indicating consistent
crystal orientations and serial planes also confirmed by
CBED analysis. More boundary HRTEM results (see
Figure S2 in the Supporting Information for details)
prove that the single crystallites of the BaFe12O19

single-particle-chain nanofibers have a random orienta-
tions, which is not consistent as previously reported.27

Formation Principle of the BaFe12O19 Single-Particle-Chain
Nanofibers. The formation mechanism, including che-
mical reactions and phase transformations, of the
BaFe12O19 single-particle-chain nanofibers were ana-
lyzed by TG-DTA, XRD, and TEM. Figure 4 illustrates the
typical TG-DTA curves from the transformation of the

Figure 2. EDX mappings of individual BaFe12O19 single-
particle-chain nanofiber. (a) Representative STEM-HAADF
image of a single BaFe12O19 nanofiber. Inset shows the EDX
spectrum acquired from the area in Figure 1b. (b) Oxygen
mapping. (c) Iron mapping. (d) Barium mapping.
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electrospun PVP/barium nitrate/iron nitrate nonahy-
drate polymer composite nanofibers to BaFe12O19

single-particle-chain nanofibers. Limited to the length

of this paper, the detailed description and explanations
of Figure 4 are presented in the Supporting Informa-
tion. Combining the measurements of crystal struc-
tures of the nanofibers by XRD at seven temperature
stages (see Figure S3 in the Supporting Information for
details), it is suggested that the following reactions
occur during the calcination process:

2Fe(NO3)3 f Fe2O3 þNOx

Ba(NO3)2 f BaOþNOx

BaOþCO2 f BaCO3

BaCO3 þ Fe2O3 f BaFe2O4 þCO2

BaFe2O4 þ 5Fe2O3 f BaFe12O19

This observation is consistent with the reported
BaFe12O19 nanoparticles.

28,29

To further understand the formation mechanism of
the BaFe12O19 single-particle-chain nanofibers, the
morphologies and crystals of the electrospun PVP/
barium nitrate/iron nitrate nonahydrate polymer com-
posite nanofibers calcined at six different temperatures
(250, 400, 500, 600, 650, and 800 �C) were observed
(Figure 5) by TEM and SAED. This provides a direct
insight of the formation of individual BaFe12O19 single-
particle-chain nanofibers during the calcination. Figure 5a
shows the nanofibers calcined at 250 �C, revealing that
their surface morphology does not appear to change

Figure 3. Structural analysis of theBaFe12O19 single-
particle-chain nanofibers: (a) TEM image. Top-left inset
shows a CBED pattern of the area 1 marked by a red circle.
Bottom-right for area 2 marked by a green circle; (b) lattice-
resolution HRTEM image of the interface of two neighbor
crystallites on a single BaFe12O19 nanofiber marked by blue
square in (a).

Figure 4. TG/DTA curves illustrating the transformation of
the precursor nanofiber to BaFe12O19 single-particle-chain
nanofibers.

Figure 5. TEM images showing the morphology evolution
during the process of calcination at six different tempera-
tures and the inset showing the corresponding SAED: (a)
250 �C; (b) 400 �C; (c) 500 �C; (d) 600 �C; (e) 650 �C; (f) 800 �C.
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from their amorphous nature. The corresponding SAED
pattern shows fuzzy rings, suggesting an amorphous
structure. When the temperature increased to 400 �C,
particle-like structures on each nanofiber were formed
(Figure 5b). This is probably due to the crystallization
of Fe2O3 which came from the decomposition of
iron nitrate confirmed by TG-DTA (Figure 4) and XRD
(Figure S3). After 500 �C annealing, the grain sizes
(Figure 5c) are larger than the size shown in Figure 5b,
which is attributed to a coalescence of the small crystal
grains of Fe2O3. The nanofiber surfaces also became
much rougher. After calcination at 600 �C (Figure 5d), it
is clearly seen that most of the nanoparticles have an
approximate 20 nm size, much larger than the size in
Figure 5c, and the average diameter of the nanofibers
reduced to 80 nm. Combined with the TG-DTA
(Figure 4) and XRD results (Figure S3), it is believed
that a continuous nucleation of Fe2O3 nanocrystallites,
formation of barium oxide and BaFe12O19 appears to
accompany the BaFe2O4 generation at this tempera-
ture. Further annealing of the nanofibers at 650 �C for
2 h caused primary BaFe12O19 formation (Figure 5e).
Both SAED patterns (the inset of Figure 5e) and XRD
shown in Figure S3 proves that the hcp crystal structure
of BaFe12O19 nanofibers has been formed. However, the
nanofiber is not pure BaFe12O19, and themorphology is
not a single-particle-chain-like structure. The final cal-
cination at 800 �C for 2 h clearly caused the removal of
all intermediate products and a further nucleation of
individual BaFe12O19 nanoparticles on each nanofiber,
which formed a single-particle-chain-like structure
(Figure 5f). Their crystal structures detected by SAED
(the inset of Figure 5f) and XRD (Figure S3) confirmed
that pure BaFe12O19 nanofibers were obtained.

On the basis of these experiments and observa-
tions, a formation mechanism of the BaFe12O19

single-particle-chain nanofibers in this work is pro-
posed, outlined in the schematic diagrams illustrated
in Figure 6. It started froma sol�gel solution composed
of PVP, DMF, DIW, barium nitrate, and iron nitrate
nonahydrate prepared for electrospinning (Figure 6a).
The solvents of DIW and DMF are believed to speed up
the evaporation process before (Figure 6b) and after
(Figure 6c) the PVP/barium nitrate/iron nitrate nona-
hydrate polymer composite nanofibers are electro-
spun and placed on a collector. At the preheating
stage, the iron nitrite nonahydrate (Fe(NO3)3 3 6H2O)
loses its water of hydration and the PVP starts to
decompose (Figure 6d).When the specimen is calcined
at a moderate temperature, the PVP is exhausted, and
the Fe(NO3)3 decomposes into Fe2O3 and forms nu-
cleations of ultrafine sizes (Figure 6e). When the heat-
ing temperature subsequently increases, the large
Fe2O3 nucleations engulf their surrounded smaller
crystallites (Figure 6f). Various sizes of crystallites are
formed on a single nanofiber, as evidenced in Figure 5c.
Simultaneously, the Ba(NO3)2 decomposes into BaO
and reacts with the CO2 and Fe2O3, which forms
BaFe2O4 nanoparticles. The BaFe2O4 crystallites also
begin to form, and the Fe2O3 grains increase their size
(Figure 6g). During these processes between preheat-
ing and moderate temperatures (Figure 6d�g), the
randomly unburned PVP pieces deriving from an un-
evendepositionvelocity of PVP from theoutside to inside
of individual nanofibers form local spatial confine-
ments with various sizes for the growth of crystallites.
The various energy barriers of these confinements then
lead to the formation of random orientations of the
crystallites. At the same time, the nanofiber morphol-
ogies change from smooth to rough. As the tempera-
ture increases to a high calcination temperature for 2 h,
the BaFe2O4 and Fe2O3 crystallites transform into

Figure 6. Schematic diagram of the formation mechanism of the BaFe12O19 single-particle-chain nanofibers. DIW and DMF
concentrations decrease from blue to white.
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BaFe12O19 crystallite. Simultaneously, the large crystals
keep devouring their surrounded small crystals until even-
tually BaFe12O19 single-particle-chain fibers (Figure 6h) are
formed and the metallic salt and polymer have been fully
exhausted.

Magnetic Properties of the BaFe12O19 Single-Particle-Chain
Nanofibers. SQUID technique was employed to investi-
gate the dynamicalmagnetic properties of the BaFe12O19

single-particle-chainnanofibers. Figure 7a shows a typical
hysteresis curve of the BaFe12O19 nanofibers measured
at room temperature, indicating a coercivity of 5943 Oe.
This value is larger than that of the BaFe12O19 nano-
wires prepared by AAO templates (2371 or 5760 Oe),30

hollow fibers (2952 Oe),31 thin films (3350 Oe using
sol�gel processes, or 5100 using laser deposition),17,32

nanoscale powders (5500 Oe),33 and nanoparticles
(approximately 3000 Oe).34 Shape anisotropy derived
from very large length-to-diameter ratios and high
magnetocrystalline anisotropy are believed to be the
main reasons for large coercivity force in the BaFe12O19

single-particle-chain nanofibers. This curve also shows
that the saturated magnetization (Ms) of the BaFe12O19

single-particle-chain nanofibers at room temperature
is 71.5 emu/g. This value is larger than that of the
BaFe12O19 nanowires prepared by AAO templates (58.26
or 56.14 emu/g),30 hollow fibers (51.56 emu/g),31 nano-
scale powders (59.36 emu/g),33 and nanoparticles (51.9
and 56.5 emu/g).34 Figure 7b shows a field-cooled
curve of the BaFe12O19 single-particle-chain nanofibers

measured at temperature ranging from 5 to 300 K and
with an applied magnetic field of 6 T. It is seen that Ms

of the BaFe12O19 single-particle-chain nanofibers reaches
99.4 emu/g at 5 K, and that the Ms decreases with the
increase of temperature.

Tounderstand themagnetic behavior of theBaFe12O19

single-particles-chain nanofibers, the reported theoretical
analysis of micromagnetism26 is adapted. In this
review, a coherent radius (Rcoh = 3.655 lex for 1D
magnetic materials) can be treated as a criteria whether
the magnetization reversal mechanism of micro- or
nanoscale system occurs through coherent rotation or
curling. Under the case of R < Rcoh, the magnetization
process is governed by coherent rotation, but for the
curling case R > Rcoh; lex is the exchange length of the
sample and is expressed in eq 1:

lex ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A

μ0Ms
2

s
(1)

where A is the exchange constant,�6.1� 10�12 J 3m
�1

for BaFe12O19 and Ms is the saturated magnetization.
The exchange length of BaFe12O19 is calculated to be
approximately 5.9 nm. A 21.5 nm coherence radius for
BaFe12O19 fibers is then calculated. In our case, the
radius of the BaFe12O19 single-particle-chain nanofi-
bers is 35 nm, determined by TEMobservation, which is
larger than the coherence radius. According to the crite-
rion of coherent radii, our BaFe12O19 single-particle-
chain nanofibers should have a curling mechanism for
magnetization reversal (as illustrated in Figure 8).

For the curling process, the coercivity of the nano-
wire structure can be theoretically obtained from
eq 2:26,35

Hc ¼ 2K1
μ0Ms

� NMs þ cA

μ0MsR2
(2)

where K1 is the magnetic anisotropic constant, 330 �
103 J 3m

�3 for BaFe12O19;N is the demagnetizing factor;
c is a constant related to sample geometry, 6.6678 for a
wire. However, this equation derives from a hypothesis
that all easy axes of spheres on the wire aligned along
the wire length axis, which is clearly not consistent
with our case. As suggested by TEM observations, the
individual particles of the BaFe12O19 single-particle-chain
nanofibershavea randomorientationandeachparticle is
a single domain. That is, the easy axis of the individual
particles on the BaFe12O19 single-particle-chain nano-
fiber is randomly oriented, rather than along the

Figure 7. (a) Hysteresis loop of the BaFe12O19 single-
particle-chain nanofibers measured at room temperature;
(b) field-cooled (FC) curves of the BaFe12O19 single-particle-
chain nanofibers measured at temperature ranging from 5
to 300 K with an applied magnetic field of 6 T.

Figure 8. Schematic illustration of the magnetization
reversal mechanism.
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nanofiber length axis as suggested using the hypoth-
esis of eq 2. Therefore, eq 2 requires amodification for a
better fit with our case. The first term of eq 2 represents
a contribution of the magnetocrystalline anisotropy.
When the angle between the easy axe(s) (or c-axis) of
uniaxial single domain particle(s) and the applied field
is only for π, the constant is 2.36 When their angles are
randomly distributed, the constant becomes 1, which
is more appropriately fit with our case. The second
term is attributed to the shape anisotropy. Due to the
nanofibers' random orientation, the shape anisotro-
py of the nanofibers is equivalent to the nanoparti-
cles that make up the nanofibers.36 In our case, each
particle on the nanofiber could be treated as a
sphere for simplification, although it is not ideal in
geometry. The third term represents a contribution
of exchange energy which then stays the same.
Therefore, eq 2 can be modified into (see Supporting
Information for details):

Hc ¼ K1
μ0Ms

� 1
3
Ms þ cA

μ0MsR2
(3)

Using the geometry and saturation magnetization of
the measured nanofiber, a calculation for the coer-
civity yields a value of 7131 Oe. This value is larger
than the experimental findings of 5943 Oe, revealing
a large discrepancy. Several reasons for this differ-
ence include a neglect of magnetostatic and ex-
change interaction between the neighborhood
BaFe12O19 nanoparticles, too much simplification of
particle's geometry, and the surface effect of indivi-
dual particles. Nevertheless, the theoretical analysis
still gives a preliminary insight of the magnetic

origins of the BaFe12O19 single-particle-chain nano-
fibers.

CONCLUSIONS

In conclusion, we have demonstrated a fabrication
method for BaFe12O19 single-particle-chain nano-
fibers using an electrospinning technique. Individual
BaFe12O19 single-particle-chain nanofibers are found
to have a continuous structure and uniform dia-
meter, of which nanoparticles stacks side by side
along the nanofiber axis. The hexagonal structure
of bulk BaFe12O19 is proved to be preserves in
the BaFe12O19 single-particle-chain nanofibers, and
individual single crystallites on each BaFe12O19 sin-
gle-particle-chain nanofibers have a random orien-
tation. The experimental results reveal that the
formation of BaFe12O19 single-particle-chain nano-
fibers mainly involves chemical reactions and phase
transformations, and a formation mechanism is then
proposed. The saturated magnetization of the Ba-
Fe12O19 single-particle-chain nanofibers is mea-
sured to be 71.5 emu/g at room temperature. The
magnetization reversal mechanism of the BaFe12O19

single-particle-chain nanofibers is theoretically ana-
lyzed to fit a curling model. This work opens a new
route for preparing large-scale production of various
magnetic ferrite nanofibers with a high quality and
length-to-diameter ratio. The new structural form of
the single-particle-chain nanofibers is expected to
have applications in the fields of biomagnetics, high-
density data storage media, magnetic separation,
microwave absorbers, switches, magnetic nanosen-
sors, etc.

EXPERIMENTS AND METHODS
BaFe12O19 single-particle-chain nanofibers were prepared

using the electrospinning techniques as follows. In a typical
synthesis, 0.1 mmol barium nitrite (Ba(NO3)2, A.R., Alfa-Aesar
Inc., USA), 1.2mmol ironnitritenonahydrate (Fe(NO3)3 3 9H2O,A.R.,
Alfa-Aesar Inc., USA), and 0.18 g of poly(vinyl pyrrolidone)
(PVP, Mw ≈ 1 300 000, Sigma-Aldrich Inc., USA) were dissolved
into a mixed solution of 1.25 mL of deionized water (DIW) and
1.25 mL of N,N-dimethylformamide (DMF, A.R., Tianjin Chemical
Corp., China) in a 5 mL vessel. The solution was continuously
and vigorously agitated by a magnetic stirrer for 4 h. A homo-
geneous PVP/barium nitrate/iron nitrate precursor sol�gel
solution was formed and then transferred into a syringe for
electrospinning. The electrospinning process was performed
by a dedicated electrospinning facility at 18.4 kV DC voltage,
15 cm spacing between needle tip and collector, and a feed
rate was fixed with 0.4 mL/h. In comparison with traditional
electrospinning methods, a special heating body was
mounted in the end of syringe (see Figure S1 in the Support-
ing Information for details) to help the solubility of the
Ba(NO3)2. The electrospun polymer composite fibers were
collected using alumina crucibles and then calcined at 300 �C
for 2 h, and then the temperature was increased to 800 �C for
2 h with a heating rate of 1 �C/min in air. The sample was
finally allowed to cool to room temperature with the same
heating rate of 1 �C/min in order to obtain a high level of
crystalline structure.

The morphology, crystal structure, and chemical character-
ization of individual BaFe12O19 single-particle-chain nanofibers
were analyzed at the nanoscale using a field-emission scanning
electron microscope (FESEM, Hitachi S-4800, Japan), high-reso-
lution transmission electronmicroscopy (HRTEM, Tecnai G2 F30,
FEI, USA) equipped with energy-dispersive X-ray analysis (EDX,
Oxford Instrument, UK), high-angle annular dark and scanning
transmission electron microscope (HAADF-STEM), and an X-ray
diffraction instrument (XRD, Philips X'pert Pro MPD, The
Netherlands). The transformation of the precursor nanofiber
to BaFe12O19 single-particle-chain nanofibers was verified by a
commercial thermogravimetry/differential thermal analysis
(TG-DTA, Diamond, USA) with a heating rate 1 �C/min, XRD,
and TEM techniques. Magnetic properties of the BaFe12O19

nanofibers were measured by superconducting quantum inter-
ference device (SQUID, MPMS-XL, Quantum Design, UK).
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